+86-28-82633987sales@biopurify.com
cnen
  • iso9001 iso9001
  • iso17025 iso17025
  • usp usp
Alternate Text
Home > Literature List > Age- and environment-dependent changes in chemical defences of larval and post-metamorphic toads

Age- and environment-dependent changes in chemical defences of larval and post-metamorphic toads

Journal name:BMC Evolutionary Biology
Literature No.:
Literature Url: https://bmcevolbiol.biomedcentral.com/articles/10.1186/s12862-017-0956-5
Date publication:13 June 2017

Background

Chemical defences are widespread in animals, but how their production is adjusted to ecological conditions is poorly known. Optimal defence theory predicts that inducible defences are favoured over constitutive defences when toxin production is costly and the need for it varies across environments. However, if some environmental changes occur predictably (e.g. coupled to transitions during ontogeny), whereas others are unpredictable (e.g. predation, food availability), changes in defences may have constitutive as well as plastic elements. To investigate this phenomenon, we raised common toad (Bufo bufo) tadpoles with ad libitum or limited food and in the presence or absence of chemical cues on predation risk, and measured their toxin content on 5 occasions during early ontogeny.

Results

The number of compounds showed limited variation with age in tadpoles and was unaffected by food limitation and predator cues. The total amount of bufadienolides first increased and later decreased during development, and it was elevated in young and mid-aged tadpoles with limited food availability compared to their ad libitum fed conspecifics, whereas it did not change in response to cues on predation risk. We provide the first evidence for the active synthesis of defensive toxin compounds this early during ontogeny in amphibians. Furthermore, the observation of increased quantities of bufadienolides in food-restricted tadpoles is the first experimental demonstration of resource-dependent induction of elevated de novo toxin production, suggesting a role for bufadienolides in allelopathy.

Conclusions

Our study shows that the evolution of phenotypic plasticity in chemical defences may depend on the ecological context (i.e. predation vs. competition). Our results furthermore suggest that the age-dependent changes in the diversity of toxin compounds in developing toads may be fixed (i.e., constitutive), timed for the developmental stages in which they are most reliant on their chemical arsenal, whereas inducible plasticity may prevail in the amount of synthesized compounds.

... We identified compounds as bufadienolides by inspecting the UV spectrum of peaks [27, 33, 45] and by using commercially acquired bufalinbufotalinresibufogeningamabufotalin, areno- and telocinobufagin (Biopurify Phytochemicals, Chengdu, China), cinobufagin ...