+86-28-82633987sales@biopurify.com
cnen
  • iso9001 iso9001
  • iso17025 iso17025
  • usp usp
Alternate Text
Home > Literature List > [8]-Gingerol exerts anti-myocardial ischemic effects in rats via modulation of the MAPK signaling pathway and L-type Ca2+ channels

[8]-Gingerol exerts anti-myocardial ischemic effects in rats via modulation of the MAPK signaling pathway and L-type Ca2+ channels

Journal name:Concise Guide to Pharmacology
Literature No.:
Literature Url: https://bpspubs.onlinelibrary.wiley.com/doi/full/10.1002/prp2.852
Date publication:14 August 2021
Myocardial ischemia (MI) remains the leading cause of mortality worldwide. Therefore, it is urgent to seek the treatment to protect the heart. [8]-Gingerol (8-Gin), one of the most active ingredients in ginger, has antioxidant, cardiotonic, and cardiovascular protective properties. The present study elucidated the cardioprotection effects and underlying mechanisms of 8-Gin in isoproterenol (ISO)-induced MI. ISO (85 mg/kg/d) was subcutaneously injected for 2 consecutive days to induce acute MI model in rats. Electrocardiography, oxidative stress levels, calcium concentrations, and apoptosis degree were observed. The effects of 8-Gin on L-type Ca2+ current (ICa-L), contraction, and Ca2+ transients were monitored in rat myocytes via patch-clamp and IonOptix detection systems. 8-Gin decreased J-point elevation and heart rate and improved pathological heart damage. Moreover, 8-Gin reduced the levels of CK, LDH, and MDA, ROS production, and calcium concentrations in myocardial tissue, while increased the activities of SOD, CAT, and GSH. In addition, 8-Gin down-regulated Caspase-3 and Bax expressions, while up-regulated Bcl-2 expression. 8-Gin produced a marked decrease in the expression of p38, JNK, and ERK1/2 proteins. 8-Gin inhibited ICa-L, cell contraction, and Ca2+ transients in isolated rat myocytes. The results indicate that 8-Gin could exert anti-myocardial ischemic effects, which may be associated with oxidative stress reduction, cardiomyocytes apoptosis inhibition through MAPK signaling pathway, and Ca2+ homeostasis regulation via ICa-L modulation.
Related Products