BACKGROUND
Ginsenoside Rb1 is one of the major bioactive components of Panax ginseng C.A. Meyer (Araliaceae), a medicinal plant that has been used for therapeutic purposes for thousands of years in Asian countries. The pharmaceutical activity of ginsenoside Rb1 highly depends on molecular structure and its deglycosylated metabolites are known to be more potent bioactive compounds. However, these deglycosylated ginsenosides do not exist naturally so they are usually obtained by poorly selective methods, like chemical hydrolysis.
RESULTS
In this study, the development and characterization of an alginate-based immobilized enzyme microreactor for the catalytic conversion of ginsenoside Rb1 to more bioactive metabolites have been reported. Enzyme kinetic parameters were calculated and characterization tests (such as determination of surface area of alginate matrix, long-term use, and effect of residence time on conversion yield) were conducted. The system was operated under continuous-flow conditions and compared with acidic and batch enzymatic hydrolysis experiments, as conventional approaches. The enzymatic microreactor showed an enhanced activity by producing 13-fold higher amount of ginsenoside F2 than batch enzymatic hydrolysis.
CONCLUSION
Obtained results indicated that the newly developed enzymatic microreactor could successfully convert ginsenoside Rb1 to more active metabolites and have a potential for the biocatalysis of multiple ginsenosides, as well as pharmaceutically active compounds. © 2021 Society of Chemical Industry (SCI).
The standards of ginsenoside Rb1, its metabolites (ginsenosides Rd, Rg3, F2, Rh2 and
compound K) and aglycone (panaxadiol) were purchased from Biopurify Phytochemicals Ltd.